Von der Entdeckung des Higgs-Teilchens zur Suche nach Dunkler Materie

-10 Jahre Physik am LHC-

Prof. Karl Jakobs Physikalisches Institut Universität Freiburg

4. Juli 2012

Die Entdeckung des Higgs-Bosons

http://www.scholarpedia.org/article/The_Higgs_Boson_discovery

Juli 2012

Juli 2019

~ 8 Ereignisse (nach Untergrundsubtraktion) 207 Ereignisse

Von der Entdeckung des Higgs-Teilchens zur Suche nach Dunkler Materie

-10 Jahre Physik am LHC-

- Das Standardmodell der Teilchenphysik
- Datennahme am LHC
- Wichtige Ergebnisse
 - Vermessung von Standardmodellprozessen
 - Was wissen wir heute über das Higgs-Boson?
 - Suche nach "Neuer Physik" (jenseits der Standardtheorie)
- Pläne für den Ausbau zum High Luminosity LHC

Das Standardmodell der Teilchenphysik

- (i) Bausteine der Materie: Quarks und Leptonen (Spin-1/2 Fermionen)
- (ii) Vier fundamentale Kräfte, beschrieben durch Quantenfeldtheorien (außer Gravitation)
 → masselose Spin-1 Eichbosonen

(iii) Das Higgs-Feld: → skalares Feld, Spin-0 Higgs-Boson Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Der Brout-Englert-Higgs Mechanismus

F. Englert und R. Brout. Phys. Rev. Lett. 13 (1964) 321;
P.W. Higgs, Phys. Lett. 12 (1964) 132, Phys. Rev. Lett. 13 (1964) 508;
G.S. Guralnik, C.R. Hagen, und T.W.B. Kibble. Phys. Rev. Lett. 13 (1964) 585.

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Der Brout-Englert-Higgs Mechanismus

Komplexes skalares (Spin 0) Feld ϕ mit Potential:

$$V(\phi) = \mu^2(\phi * \phi) + \lambda(\phi * \phi)^2$$

Für $\lambda > 0$, $\mu^2 < 0$: "Spontane Symmetriebrechung"

- Wechselwirkungsstärke mit dem Higgs-Feld ist proportional zur Masse der Teilchen
- Higgs-Boson zerfällt bevorzugt in die schwersten Teilchen
- Masse des Higgs-Bosons wird nicht vorhergesagt, jedoch m_H < 1000 GeV Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Zerfälle des Higgs-Teilchens

Zerfallsraten in die verschiedenen Teilchen können berechnet werden:

Lebensdauer: ~10⁻²² s

$$\Gamma(H \to f\bar{f}) = N_C \frac{G_F}{4\sqrt{2\pi}} m_f^2 (M_H^2) M_H$$

$$\Gamma(H \to VV) = \delta_V \frac{G_F}{16\sqrt{2\pi}} M_H^3 (1 - 4x + 12x^2) \beta_V$$

where: $\delta_Z = 1, \, \delta_W = 2, \, x = M_V^2 / M_H^2, \, \beta = \text{velocity}$

$$\Gamma(H \to gg) = \frac{G_F \alpha_a^2 (M_H^2)}{36\sqrt{2\pi^3}} M_H^3 \left[1 + \left(\frac{95}{4} - \frac{7N_f}{6}\right) \frac{\alpha_a}{\pi} \right]$$
$$\Gamma(H \to \gamma\gamma) = \frac{G_F \alpha_a^2}{128\sqrt{2\pi^3}} M_H^3 \left[\frac{4}{3} N_C e_t^2 - 7 \right]^2$$

Die Offenen Fragen

Wichtige offene Fragen der Physik

unkle Energie 71.5%

Dunkle Materie

24.0%

1. Masse

Was ist der Ursprung der Masse? Existiert das Higgs Teilchen?

2. Vereinheitlichung

- Können die Wechselwirkungen vereinheitlicht werden?
- Gibt es neue Materiezustände,
 z.B. in Form von supersymmetrischen Teilchen?
 Stellen diese die Dunkle Materie im Universum dar?

3. Generationenproblem

- Warum gibt es drei Familien von Teilchen?
- Was ist die Ursache der Asymmetrie zwischen Materie und Antimaterie?

4. Gibt es zusätzliche Raumdimensionen?

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Das ATLAS-Experiment

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

- 1500 Ereignisse pro Sekunde selektiert
 - → Speichermedien

~ 1.200 Doktorand/inn/en

Erste pp-Kollisionen im Nov. 2009

Candidate Collision Event

2009-11-23, 14:22 CET Run 140541, Event 171897

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

30. März 2010: Kollisionen bei den bis dahin höchsten Energien von 7 TeV

Since 30. March 2010: collisions at 7 TeV (.... first interesting results appeared soon)

2010: Well known resonances appeared "online"

Datennahme am LHC

- Run 1: 2010 2012 $\sqrt{s} = 7 / 8 \text{ TeV}$ $L_{int} = 28 \text{ fb}^{-1} \text{ vom LHC geliefert}$ Run 2: 2015 – 2018 $\sqrt{s} = 13 \text{ TeV}$ $L_{int} = 156 \text{ fb}^{-1} \text{ vom LHC geliefert}$
- Ausgezeichnete Leistungsfähigkeit des Beschleunigers; Das Ziel von 150 fb⁻¹ (in Run 1 + Run 2) wurde klar erreicht

Datennahme am LHC (cont.)

 $Z \rightarrow \mu\mu$ Kandidat mit 65 zusätzlichen rekonstruierten Wechselwirkungspunkten!

Datennahme in Run 2

Ausgezeichnete Leistungsfähigkeit der Experimente ATLAS und CMS

Di-jet event with the highest di-jet invariant mass of $m_{jj} = 8.02$ TeV recorded during 2016

Doppelt-differentielle Wirkungsquerschnitte zur Jet-Produktion, in Abhängigkeit von p_T und der Rapidität y (Daten aus 2010)

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Double differential jet production cross sections, as a function of p_T and rapidity y (full 2015 data set, $\sqrt{s} = 13$ TeV)

- Also at the highest energies explored so far, the data are well described by NLO perturbative QCD calculations (NLOJet++)
- Latest comparisons to NNLO predictions (NNLOJet) [J. Currie, N. Glover, T. Pieres, Phys. Rev. Lett. 118 (2017)]
 → improved agreement

Search for new phenomena in di-jet events

• Publication on 2015+2016 data: 37.0 fb⁻¹ at \sqrt{s} = 13 TeV

*pre-LHC limit on excited quarks from the Tevatron: 0.87 TeV

Search for new phenomena in di-jet events

• Prel. result based on complete Run-2 (2015-2018) dataset: 139 fb⁻¹ at \sqrt{s} = 13 TeV

• 95% CL exclusion limits: Excited quarks

Gewaltige Fortschritte auf theoretischer Seite: (N)NLO QCD und el.schwache Korrekturen LHC für Theoretiker: "Long and Hard Calculations"

Vektorboson-Streuprozesse

Was wissen wir heute über das Higgs-Boson?

Ergebnisse der Suche nach H $\rightarrow \gamma\gamma$ und H $\rightarrow ZZ^* \rightarrow 4\ell$ bei 13 TeV

- Beeindruckende Signale in diesen Zerfallskanälen (gute Massenauflösung) (Daten bei 13 TeV, 2015 – 2017 bzw. 2015 – 2018)
- Beobachtung mit einer Signifikanz von > 5σ in beiden Kanälen

$H \rightarrow \gamma\gamma$ Signale für verschiedene Produktionsprozesse

$H \to WW^* \to \ell_V \, \ell_V$

- Großes Verzweigungsverhältnis, allerdings auch großer Untergrund (kein Massen-peak rekonstruierbar, wegen Neutrinos im Endzustand)
- \rightarrow Transversale Masse M_T, Invariante Masse der beiden Leptonen m_l)

 Sehr signifikante Signale in den Verteilungen ATLAS: Gluon-Fusion 6.3σ (5.2σ erw.) CMS: total 9.1σ (7.1σ erw.)

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Wechselwirkung mit Fermionen?

Suche nach $H \rightarrow \tau \tau$ und $H \rightarrow$ bb Zerfällen, sowie nach ttH-Produktion

Couplings to quarks and leptons ?

- Search for $H \rightarrow \tau\tau$ and $H \rightarrow$ bb decays;
- Challenging signatures due to jets (bb decays) or significant fraction of hadronic tau decays
- Vector boson fusion mode essential for $H \rightarrow \tau \tau$ decays

 Associated production WH, ZH modes have to be used for H → bb decays

Exploitation of multivariate analyses

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

2018: Beobachtung des Zerfalls H \rightarrow bb

- Größte Verzweigungsverhältnis (BR~58%)
- Suche über assoziierte Produktion VH, $H \rightarrow bb$ (V=W/Z)

Suche nach der ttH-Produktion

- Direkter Zugang zur Yukawa-Kopplung des Top-Quarks
- Zahlreiche Zerfälle werden betrachtet: Endzustände mit Leptonen, Jets, b-Jets und Photonen

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

2018: Beobachtung der ttH-Produktion

- Kombination aller Zerfallskanäle → Beobachtung der ttH Produktion in beiden Experimenten (2018)
- Gemessene Produktionsraten konsistent mit den SM Erwartungen

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

CMS: (Kombination von Run-1 und Run-2 Daten) $\mu = 1.26 \pm 0.26$ Signifikanz: 5.2 σ (beob), 4.2 σ (erw.)

Hinzunahme der 2018 Daten für H $\rightarrow \gamma\gamma$

• Signifikanz: 4.9σ (4.2σ erw.)

• Signalstärke konsistent mit SM-Erwartung:

$$\mu_{t\bar{t}H} = 1.38 + 0.33_{-0.31} \text{ (stat.)} + 0.13_{-0.11} \text{ (exp.)} + 0.22_{-0.14} \text{ (theo.)}$$

Kopplungen an leichtere Fermionen? $H \rightarrow \mu\mu$?

Signalstärke: $\mu = 0.5 \pm 0.7$

Higgs-Boson-Kopplungsstärken

Einführung von Skalenfaktoren κ (*coupling modifier*) für die Stärke der Wechselwirkung des Higgs-Teilchens mit den SM-Teilchen

Standardtheorie: $\kappa_i = 1.00$

Higgs-Boson-Kopplungsstärken

Bislang stimmen alle gemessenen Eigenschaften des Higgs-Bosons mit den Vorhersagen der Theorie überein (innerhalb der Unsicherheiten)

Zukunft: Reduzierung der Unsicherheiten, seltene Zerfälle, Higgs-Boson Selbstkopplung

Suche nach Physik jenseits des Standardmodells

© Hitoshi Murayama, IPMU Tokyo & Berkeley

Supersymmetrie (SUSY)

-Eine viel diskutierte Erweiterung der Standardtheorie-

Jedem Teilchen wird ein supersymmetrisches Partnerteilchen zugeordnet

Symmetrie: Materieteilchen \leftrightarrow Austauschteilchen

Motivation für Supersymmetrie

- Supersymmetrische Teilchen zerfallen in vielen Modellen in das Leichteste SUSY Teilchen (LSP); Dieses ist stabil und wechselwirkt nur schwach
 - → Kandidat für die "Dunkle Materie"

• Vereinheitlichung der Kräfte scheint in einer supersymmetrischen Theorie möglich zu sein

• Kompensation von quadratisch divergenten Quantenkorrekturen

Die Suche nach Supersymmetrie am LHC

- Die Partnerteilchen der Quarks und Gluonen, die sog. Squarks und Gluinos, können am LHC in hohen Raten erzeugt werden
- Sie zerfallen in Kaskaden in das leichteste SUSY-Teilchen
- Dieses verlässt den Detektor ohne Wechselwirkung
 - ⇒ Signatur: Fehlende transversale Energie (senkrecht zur Strahlachse)

Ergebnisse zur Suche nach Supersymmetrie (2015 – 2016)

- Beispiel: Suche nach der Produktion von Squarks und Gluinos
- Daten stimmen mit den Erwartungen aus Prozessen der Standardtheorie gut überein

m_{eff} = skalare Summe der Impulse aller Jets im Endzustand

Ergebnisse zur Suche nach Supersymmetrie (2015 – 2016)

Kein Überschuss \rightarrow Ausschlussgrenzen auf die Massen der SUSY-Teilchen

m(gluino) > ~2.0 TeV (95% CL) für leichte LSPs (χ^0) Ausschlussgrenzen für Squarks der ersten und zweiten Generation vergleichbar

Allerdings:

- Ausgeschlossener Massenbereich hängt von $m_{\chi 0}$ (LSP) ab
- Bislang nur einfache Zerfallskaskaden untersucht
- Schwächere Ausschlussgrenzen für Partnerteilchen der 3. Generation (Top-Partner)

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Highest-mass dielectron event found during Run-2: 4.1 TeV.

Suche nach Resonanzen in Zwei-Lepton-Endzuständen (zusätzliche Eichbosonen)

Daten sind in Übereinstimmung mit Erwartungen aus Untergrund von Standardmodellprozessen

 \rightarrow m(Z') (Sequential SM) > 5.1 TeV (95% C.L.)

Summary of Results on Searches for other BSM physics

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Die nächsten Schritte

LHC / HL-LHC Plan

Heisenberg-Gesellschaft: "Quantenphysik an der Schule", Lautrach 2019

Erwartete integrierte Luminosität am LHC und HL-LHC

3000

[©] P. Ferreira da Silva at Moriond EW, 2016

ATLAS Phase-II Upgrade

Zusammenfassung

- Mit der Inbetriebnahme des LHC hat f
 ür die Teilchenphysik eine neue Ära begonnen → Erforschung der TeV Skala; Ausgezeichnete Leistungsf
 ähigkeit des Beschleunigers und der Experimente
- Test der Standardtheorie bei höchsten Energien, mit zunehmender Präzision
- Higgs Boson:
 - Innerhalb der momentanen Unsicherheiten stimmen alle gemessenen Eigenschaften mit den Vorhersagen der Standardtheorie überein;
 - Allerdings kann das Higgs-Boson eine Tür zu *Neuer Physik* öffnen → Präzisionsmessungen
- Bislang keine Hinweise auf Physik jenseits des Standardmodells
- Zukunftsprojekt: HL-LHC Erforschung des Higgs-Sektors und Fortführung der direkten Suche nach Neuer Physik

