Experimente mit ultrakalten

Quantengasen

Monika Aidelsburger

www.quantum-munich.de

Übersicht

- Quantensimulationen
- Was ist ultrakalt / Materiewellen
- Wie erreich man ultrakalte Temperaturen?
- Ultrakalte Atome in optischen Kristallen
- Beispiel: künstliche Magnetfelder / topologische Isolatoren

Übersicht

- Quantensimulationen
- Was ist ultrakalt / Materiewellen
- Wie erreich man ultrakalte Temperaturen?
- Ultrakalte Atome in optischen Kristallen
- Beispiel: künstliche Magnetfelder / topologische Isolatoren

Einige der fundamentalsten Fragen der Physik:

- Wie organisiert sich Materie nach den Gesetzen der Quantenmechanik?
- Wie können wir diese Organisation kontrollieren?

Technologische Bedeutung

Hochtemperatur Supraleitung (Energieversorgung)

Magnetismus (Speicher, Spintronics...)

Quantentechnologien (Quantencomputer, Zeit- und Freuenz-Standards, Quantensensoren,...)

Interdisziplinäre Herausforderung!

Quanten-Komplexität

Einleitung

Quanten-Komplexität

2^N Konfigurationen gleichzeitig!

Einleitung

Quanten-Komplexität

Um 300 spins zu simulieren bräuchten wir einen Rechner der jedes einzelne Atom im Universum als Speicherzelle nutzt! (ca. 2³⁰⁰ Atome)

Unmöglich auf klassischen Rechnern!

Einleitung Die Herausforderung: Quanten-Vielteilchensysteme

Kontrolle einzelner Quantenteilchen Image: Construction of the state of the

Herausforderung: ... hin zur ultimativen Kontrolle über Quanten-Vielteilchensysteme!

Atomkristall im Lichtgitter

Übersicht

- Quantensimulationen
- Was ist ultrakalt / Materiewellen
- Wie erreich man ultrakalte Temperaturen?
- Ultrakalte Atome in optischen Kristallen
- Beispiel: künstliche Magnetfelder / topologische Isolatoren

ł.

相

自

Ì

ALC: NO

The state

AMBLE I

Ì

1000

- The state

ALM TO A

Ì

ALC: NO

- The second

į.

Ì

用

Ì

Welle-Teilchen Dualismus:

Louis-Victor de Broglie (1892-1987)

 $=rac{h}{p}=rac{h}{mv}$ λ

Welle-Teilchen Dualismus:

Louis-Victor de Broglie (1892-1987)

 $\lambda = \frac{h}{p} = \frac{h}{mv}$

Erwin Schrödinger (1887-1961)

 $i\hbar\frac{\partial\Psi}{\partial t} = H\Psi$

Wellenfunktion Ψ

Superpositionsprinzip für Wellen

Superpositionsprinzip für Wellen

konstruktive Interferenz bei Addition zweier Wellen in Phase

Superpositionsprinzip für Wellen

Superpositionsprinzip für Wellen

 $\lambda \ll$ Größe des Objekts

Ausbreitung entlang gerader Linien

 $\lambda \ll$ Größe des Objekts

Ausbreitung entlang gerader Linien

Wellen werden gebeugt!

deBroglie Wellenlänge

PRE

	Objekt	m (kg)	v (m/s)	λ (mm)
•	Elektron	9,1*10 ⁻³¹	2*10 ⁶	4*10 ⁻⁷ (0,0000004)
,	Neutron	1,7*10 ⁻²⁷	4*10 ³	9*10 ⁻⁸ (0,0000009)
¢	⁸⁷ Rb Atom	1,5*10 ⁻²⁵	270	2*10 ⁻⁸ (0,0000002)
<u>.</u>	C ₆₀	1,2*10 ⁻²⁴	210	3*10 ⁻⁹ (0,00000003)
VIER	Fussball	0,5	20	7*10 ⁻³² (0,00000000000000 00000000000000000000

zum Vergleich: Protonenradius 10⁻¹² mm

Elektromagnetische Felder

$$E = E_1 + E_2 e^{i\varphi}$$
$$I \propto \left| E_1 + E_2 e^{i\varphi} \right|^2$$

Elektromagnetische Felder

Quantenmechanische Wellenfunktion

$$E = E_1 + E_2 e^{i\varphi}$$
$$I \propto \left| E_1 + E_2 e^{i\varphi} \right|^2$$

Elektromagnetische Felder

Quantenmechanische Wellenfunktion

$$E = E_1 + E_2 e^{i\varphi}$$
$$I \propto \left| E_1 + E_2 e^{i\varphi} \right|^2$$

$$\Psi = \Psi_1 + \Psi_2 e^{i\varphi}$$
$$n \propto \left| \Psi_1 + \Psi_2 e^{i\varphi} \right|^2$$

Elektromagnetische Felder

Quantenmechanische Wellenfunktion

Elektromagnetische Felder

Quantenmechanische Wellenfunktion

Beschreibt Wahrscheinlichkeitsverteilung um das Teilchen an einem Ort x zu finden!

Einzelne Elektronen am Doppelspalt

A. Tonomura et al., Amer. J. Phys. 57 (1989) pp.117-120.

Einzelne Elektronen am Doppelspalt

A. Tonomura et al., Amer. J. Phys. 57 (1989) pp.117-120.

M. Arndt et al., Nature **401** (1999) pp.680

Thermische de Broglie Wellenlänge

Thermische de Broglie Wellenlänge

auf einer makroskopischen Skala zu sehen !

Materiewellen Vom klassischen Gas zum Bose-Einstein-Kondensat

Materiewellen Vom klassischen Gas zum Bose-Einstein-Kondensat

Materiewellen Vom klassischen Gas zum Bose-Einstein-Kondensat

Warum ist es schwierig ein BEC zu erzeugen?

Bedingung zur BEC:

$$\left[n\cdot\lambda^3\approx 1\right]$$

z.B. Wasser

Materiewellen

Für eine typische Dichte von Wasser n_{H20} erhalten wir $T_c = IK$

Problem: Wasser ist ein Block EIS @ IK

Lösung: Dichte um mehrere Größenordnungen verringern, so dass sich der Festkörper sehr langsam bildet!

Warum ist es schwierig ein BEC zu erzeugen?

1995: Experimentelle Realisierung durch E. Cornell, C. Wieman, W. Ketterle

Übersicht

- Quantensimulationen
- Was ist ultrakalt / Materiewellen
- Wie erreich man ultrakalte Temperaturen?
- Ultrakalte Atome in optischen Kristallen
- Beispiel: künstliche Magnetfelder / topologische Isolatoren

T.W. Hänsch and A.L. Schawlow, Opt. Comm. 13, 68 (1975)

Laserkühlung an der Arbeit!

Laserkühlung an der Arbeit!

Laserkühlung an der Arbeit!

S. Chu C. Cohen- B. Phillips Tannoudji

Der Weg zum Bose-Einstein-Kondensat

Verdampfungskühlen

Tom Greytak

Daniel Kleppner

Time-of-Flight Abbildung

Time-of-Flight Abbildung

Interferenz zweier Bose-Einstein Kondensate

Gefangene BEC's

BEC's nach einer Expansionszeit t

M. R. Andrews et al., Science 275, 637 (1997)

Interferenz zweier Bose-Einstein Kondensate

Gefangene BEC's

BEC's nach einer Expansionszeit t

$$\lambda = \frac{h}{m\Delta v} = \frac{ht}{md}$$

M. R. Andrews et al., Science 275, 637 (1997)

Interferenz zweier Bose-Einstein Kondensate

Gefangene BEC's BEC's nach einer

Expansionszeit t

$$\lambda = \frac{h}{m\Delta v} = \frac{ht}{md}$$

M. R. Andrews et al., Science 275, 637 (1997)

und eine Menge Laser & Optik!

Atomuhren

- Satellitennavigationssysteme: GPS, GLONASS, Galileo,...
- Präzisionsmessungen: mögliche Änderung d. Feinstrukturkonstante?

Anwendungen

BNM-SYRTE, FR

PTB, D

NIST, USA

Atomuhren

- Satellitennavigationssysteme: GPS, GLONASS, Galileo,...
- Präzisionsmessungen: mögliche Änderung d. Feinstrukturkonstante?

"Cs-Fontäne": Abweichung ~Is in 20Mio Jahren!

BNM-SYRTE, FR

PTB, D

NIST, USA

Anwendungen

Die stabilsten und genauesten Uhren

Optische Atomuhren

Die stabilsten und genauesten Uhren

Optische Atomuhren

Bloom et al., Nature 506, 71-74 (2014)

Die stabilsten und genauesten Uhren

Optische Atomuhren

Ungenauigkeit: <Is in IMrd Jahren!

Bloom et al., Nature 506, 71-74 (2014)

Übersicht

- Quantensimulationen
- Was ist ultrakalt / Materiewellen
- Wie erreich man ultrakalte Temperaturen?
- Ultrakalte Atome in optischen Kristallen
- Beispiel: künstliche Magnetfelder / topologische Isolatoren

Periodische Intensitätsprofile in ID,2D und 3D erzeugen Lichtkristalle für neutrale Atome (Hier für kleine Polystyrol-Teilchen gezeigt).

courtesey: T. Hänsch

.

Künstliche Quantenmaterie ↔ Reale Festkörper

d: Abstand zwischen Atomen

de Broglie Wellenpakete

Universalität der Quantenmechanik!

Künstliche Quantenmaterie ↔ Reale Festkörper

d: Abstand zwischen Atomen

de Broglie Wellenpakete

Universalität der Quantenmechanik!

Ultrakalte Quantenmaterie

Dichten: 1014/cm3

(100000 dünner als Luft)

Temperaturen: few nK

(100 Mio-mal niedriger also im Weltall)

<u>Reale Festkörper</u>

- Dichten: 10²⁴-10²⁵/cm³
- Temperaturen: mK several hundred K

(Neuchatel)

Künstliche Quantenmaterie ↔ Reale Festkörper

d: Abstand zwischen Atomen

de Broglie Wellenpakete

Universalität der Quantenmechanik!

Ultrakalte Quantenmaterie

Dichten: 10¹⁴/cm³

(100000 dünner als Luft)

Temperaturen: few nK

(100 Mio-mal niedriger also im Weltall)

1000x vergrößertes Modellsystem! <u>Reale Festkörper</u>

- Dichten: 10²⁴-10²⁵/cm³
- Temperaturen: mK several hundred K

(Neuchatel)

Quantengas-Mikroskop

Einzelne Atome abbilden

Quantengas-Mikroskop

Einzelne Atome abbilden

Quantengas-Mikroskop

Einzelne Atome abbilden

Quantengas-Mikroskop

Einzelne Atome abbilden

Kohärente Spin-manipulationen

optische Auflösung ca. 50 nm!

Ch. Weitenberg et al., Nature **471**, 319-324 (2011)

Einteilchen-Tunneln

Einteilchen-Tunneln

Motional State Affected?

Exp:Y. Silberberg (photonische Wellenleiter), D. Meschede & R. Blatt (quantum walks)...

Motional State Affected?

Exp:Y. Silberberg (photonische Wellenleiter), D. Meschede & R. Blatt (quantum walks)...

Beliebige Geometrien

Mikrospiegelaktoren (DMD)

Beliebige Geometrien

Gemessenes Profil

Mikrospiegelaktoren (DMD)

Beliebige Geometrien

Mikrospiegelaktoren (DMD)

Gemessenes Profil

Exotische Gitter

Quantenmech. Transportgeometrien

Box-Potentiale

Beliebige Geometrien

Mikrospiegelaktoren (DMD)

Präzise Kontrolle von quantenmechanischen Systemen!

Übersicht

- Quantensimulationen
- Was ist ultrakalt / Materiewellen
- Wie erreich man ultrakalte Temperaturen?
- Ultrakalte Atome in optischen Kristallen
- Beispiel: künstliche Magnetfelder / topologische Isolatoren

<u>Klassisch:</u>

Beobachtbare physikalische Phänomene hängen nur von den elektromagnetischen Feldern ab

 \leftrightarrow

Vektorpotential hat keine Auswirkung

$$\nabla\times\vec{A}=\vec{B}$$

Exp: A. Tonomura, et al. Phys. Rev. Lett. (1986) Y. Aharonov & D. Bohm Phys. Rev.(1959); W. Ehrenberg & R. Siday Proc. Phys. Soc B (1949)

<u>Klassisch:</u>

Beobachtbare *physikalische Phänomene* hängen nur von den *elektromagnetischen Feldern* ab

 \leftrightarrow

Vektorpotential hat keine Auswirkung

$$\nabla\times\vec{A}=\vec{B}$$

Quantenmechanisch:

Vektorpotential beeinflusst Wellenfunktion!

Exp: A.Tonomura, et al. Phys. Rev. Lett. (1986) Y.Aharonov & D. Bohm Phys. Rev.(1959); W. Ehrenberg & R. Siday Proc. Phys. Soc B (1949)

Quantenmechanik:

Wellenfunktion sammelt Phase auf, die vom Weg abhängt!

$$\psi(\Gamma_1) = \psi e^{i\varphi_1} \neq \psi(\Gamma_2) = \psi e^{i\varphi_2}$$

Quantenmechanik:

Wellenfunktion sammelt Phase auf, die vom Weg abhängt!

$$\psi(\Gamma_1) = \psi e^{i\varphi_1} \neq \psi(\Gamma_2) = \psi e^{i\varphi_2}$$

Interferenzmuster hängt von Magnetfeldstärke ab, obwohl sich das Elektron im feldfreien Raum bewegt!

Phasendifferenz:

$$\varphi_1 - \varphi_2 = \frac{q}{\hbar} \oint \vec{A} \, \mathrm{d}\vec{r} = \frac{q}{\hbar} \Phi_B$$

Phasendifferenz:

$$\varphi_1 - \varphi_2 = \frac{q}{\hbar} \oint \vec{A} \, \mathrm{d}\vec{r} = \frac{q}{\hbar} \Phi_B$$

magnetischer Fluss Φ_B

Phasendifferenz:

$$\varphi_1 - \varphi_2 = \frac{q}{\hbar} \oint \vec{A} \, \mathrm{d}\vec{r} = \frac{q}{\hbar} \Phi_B$$

magnetischer Fluss
$$\Phi_B$$

Quantensimulationen von Magnetfeldern mit *neutralen Atomen*?

Optisches Gitter:

• Tunnelkopplung J

Optisches Gitter:

- Tunnelkopplung J
- Magnetfelder / Vektorpotential → Phasenterme

Optisches Gitter:

- Tunnelkopplung J
- Magnetfelder / Vektorpotential → Phasenterme

✓ Zusätzliche Laserstrahlen erzeugen Phasenterme

Optisches Gitter:

- Tunnelkopplung J
- Magnetfelder / Vektorpotential → Phasenterme

✓ Zusätzliche Laserstrahlen erzeugen Phasenterme

Optisches Gitter:

- Tunnelkopplung J
- Magnetfelder / Vektorpotential → Phasenterme

✓ Zusätzliche Laserstrahlen erzeugen Phasenterme

Optisches Gitter:

- Tunnelkopplung J
- Magnetfelder / Vektorpotential → Phasenterme

- ✓ Zusätzliche Laserstrahlen erzeugen Phasenterme
- ✓ Magnetfelder: 100-1000x stärker als existierende Felder

Optisches Gitter:

- Tunnelkopplung J
- Magnetfelder / Vektorpotential → Phasenterme

- ✓ Zusätzliche Laserstrahlen erzeugen Phasenterme
- Magnetfelder: 100-1000x stärker als existierende Felder

Geht über bloße Simulation hinaus!

Moderne Festkörperphysik:

Geometrische Eigenschaften definieren neuartige Phasenzustände

1985: Klaus v. Klitzing;

für Vielteilchensysteme: 1998: R. B. Laughlin, H. L. Störmer, D. S. Tsui

Moderne Festkörperphysik:

Geometrische Eigenschaften definieren neuartige Phasenzustände Bsp.: Quanten-Hall Effekt

1985: Klaus v. Klitzing;

für Vielteilchensysteme: 1998: R. B. Laughlin, H. L. Störmer, D. S. Tsui

Festkörper lassen sich wie geometrische Objekte klassifizieren!

Festkörper lassen sich wie geometrische Objekte klassifizieren!

Festkörper lassen sich wie geometrische Objekte klassifizieren!

⇒ neue Herausforderung: topologische Vielteilchensysteme!

Festkörper lassen sich wie geometrische Objekte klassifizieren!

⇒ neue Herausforderung: topologische Vielteilchensysteme!

Danke für die Aufmerksamkeit!

www.quantum-munich.de

Danke für die Aufmerksamkeit!

